Novel Therapeutic Strategies for Targeting the Lymphoma Microenvironment

Ruan Face By Jia Ruan, MD, PhD

Although conventional chemotherapy is primarily aimed at tumor cells, we now know of the importance of neighborhood cells, included within the tumor mass. These include endothelial cells and pericytes that form blood vessels, macrophages that mediate inflammation, and fibroblasts and extracellular matrix proteins that build matrix and scar tissues. The interaction between the tumor cells and their neighborhood is collectively known as the tumor microenvironment. Given the importance of the tumor microenvironment in maintaining tumor growth and developing resistance to conventional chemotherapy, novel strategies that target the microenvironment are under active investigation. Clinical researchers led by, Dr. Jia Ruan, have recently published 2 important studies on developing novel therapeutic strategies that target lymphoma angiogenesis (blood vessel formation) and lymphangiogenesis (lymphatic vessel formation) within the tumor microenvironment.

The first study was published in the leading hematology journal Blood in collaboration with Dr. Leandro Cerchietti, a lymphoma biologist, and Dr. Katherine Hajjar, a vascular biology expert, both at Weill Cornell Medical College. The study found that pericytes, the vascular accessory cells surrounding the endothelial cells, are important players in lymphoma tumor angiogenesis, and represent potentially novel therapeutic targets for anti-lymphoma therapy. Specifically, the Weill Cornell lymphoma researchers treated human diffuse large B-cell lymphoma (DLBCL) growing in mouse models with an oral drug called imatinib. This incapacitated a critical cell surface receptor within the pericytes, namely platelet-derived growth factor receptor β (PDGFRβ), which is important for the survival of the pericytes and its communication with the endothelial cells. As a result, lymphoma-associated microvascular blood vessel formation was reduced due to programmed-cell death of both pericytes and endothelial cells. This ultimately translated into therapeutic effect of lymphoma growth impairment. This study provided proof of principal that targeting non-tumor vascular cells within the lymphoma microenvironment can result in significant inhibition of lymphoma growth, providing the basis for more refined consideration of anti-angiogenesis as a treatment strategy for lymphoma patients.

The second study published in Cancer Research, in collaboration with Dr. Lijun Xia, a glycoprotein and vascular biology expert at the Oklahoma Research Foundation. The researchers found that 1) lymphatic vessels, which form the vascular network known as lymphangiogenesis, contributed to the growth and spreading of lymphomas in an experimental model of mantle cell lymphoma (MCL), and 2) treatment with the immunomodulatory drug lenalidomide potently inhibited the growth and spreading of MCL by disabling tumor lymphangiogenesis. Mechanistically the researchers demonstrated that treatment with lenalidomide reduced the number of MCL-associated macrophages and their production of a growth factor important for the formation of lymphatic vessels, namely vascular endothelial growth factor-C (VEGF-C). This is the first study to address the potential importance of lymphangiogenesis in lymphoma growth, and provided a novel perspective of the mechanisms of action of lenalidomide in lymphoma therapy. This pre-clinical study synergizes with our recent clinical data displaying high response rates and durable remissions with the biologic combination of lenalidomide + rituximab in patients with previously untreated MCL.

Both studies open potentially new novel paths to treating lymphoma, exemplifying the Lymphoma Program’s commitment to the bench-to-bedside translational research that brings cutting-edge science to patient care.

References

1. Blood. 2013 Jun 27:121(26):5192-202. Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes.

2. Cancer Res. 2013 Dec 15:73(24):7254-64. Lenalidomide inhibits lymphangiogenesis in preclinical models of mantle cell lymphoma.

Dr. Ari Melnick Discusses EZH2 as a Potential Target in Diffuse Large B Cell Lymphoma

Last week Weill Cornell researcher Dr. Ari Melnick sat down with Targeted Oncology to briefly summarize the potential of EZH2 in treating diffuse large B-cell lymphoma.

 

FDA Approves Ibrutinib for Chronic Lymphocytic Leukemia

Last week the FDA announced the approval of ibrutinib for patients with chronic lymphocytic leukemia. According to their press release:

“The U.S. Food and Drug Administration today expanded the approved use of Imbruvica (ibrutinib) for chronic lymphocytic leukemia (CLL) patients who have received at least one previous therapy.”

“CLL is a rare blood and bone marrow disease that usually gets worse slowly over time, causing a gradual increase in white blood cells called B lymphocytes, or B cells. The National Cancer Institute estimates that 15,680 Americans were diagnosed and 4,580 died from the disease in 2013.”

“Imbruvica works by blocking the enzyme that allows cancer cells to grow and divide. In November 2013, the FDA granted Imbruvica accelerated approval to treat patients with mantle cell lymphoma, a rare and aggressive type of blood cancer, if those patients received at least one prior therapy.”

“Today’s approval provides an important new treatment option for CLL patients whose cancer has progressed despite having undergone previous therapy,” said Richard Pazdur, M.D., director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research. “The FDA completed its review of Imbruvica’s new indication under the agency’s accelerated approval process, which played a vital role in rapidly making this new therapy available to those who need it most.”

 The full press release can be read on their website

The full listing of CLL trials at WCMC is available on the clinical trials website. Look to this space for further news concerning  ibrutinib trials for CLL patients at WCMC.