Precision Medicine Combination Treatment Shows Anti-Tumor Activity in Preclinical DLBCL Models

By Sucharita Mistry, PhD

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma in adults. DLBCLs are aggressive and typically represent a heterogeneous collection of diseases that can be grouped into different subtypes depending on their particular genetic lesions.

One such subtype, described as the C3 or EZB cluster, features alterations in the BCL2 gene and mutations in chromatin remodeling genes such as EZH2. The malignant growth of this particular subtype of DLBCL is likely dependent on genetic abnormalities in EZH2 and BCL2. Both these oncogenes (genes with the potential to cause cancer) mediate their effects on tumor growth through distinct mechanisms, providing new opportunities for rational therapeutic strategies that inhibit EZH2 and BCL2 concurrently.

Dr. Lisa Roth and colleagues from the Weill Cornell Medicine and NewYork-Presbyterian Hospital Lymphoma Program evaluated the efficacy of EZH2 inhibitor tazemetostat and BCL2 inhibitor venetoclax as single agents and in combination using different preclinical models.

Tazemetostat and venetoclax were administered alone and in combination in a panel of DLBCL cell lines with and without mutations in EZH2 and translocation (a genetic abnormality in which a chromosome breaks and reattaches to a different chromosome) in BCL2. In DLBCL cells harboring EZH2 mutation and BCL2 translocation, the combination treatment markedly enhanced cell killing compared to either drug alone. Although these findings are encouraging, cell culture models are limited as lymphoma cells grown on a plastic surface in liquid cultures cannot recapitulate the physiologic environment within the human body.

To test the efficacy of the drugs in models with increased clinical relevance, Weill Cornell researchers established three-dimensional (3D) organoids that closely mimic the lymph node architecture in humans. The tazemetostat/venetoclax combination therapy was tested in two different novel organoid systems 1) organoids derived from lymphoma cells, and 2) patient-derived xenograft (PDX) organoids generated from a patient tumor and propagated in mice. The PDX tumor carried both EZH2 mutation and BCL2 translocation. In both types of organoids, tazemetostat and venetoclax had minimal activity as single agents, whereas the tazemetostat/venetoclax combination resulted in significant cell killing.

Using novel model systems, this study demonstrated that EZH2 inhibition combined with BCL2 inhibition results in synergistic anti-tumor effects. Learn more about the findings here.

Lisa“The synergistic anti-lymphoma activity mediated by the combination of tazemetostat and venetoclax is quite promising,” says Dr. Roth. “This combination therapy is anticipated to be especially effective as precision therapy for DLBCL patients with EZH2 mutation and BCL2 alteration.”

A clinical trial of this combination treatment is currently in development in collaboration with Drs. Ari Melnick, John Leonard and Peter Martin.